Processing math: 100%

sábado, 25 de abril de 2015

Compramos dos objetos ... ( Artículo escrito en catalán )

Enunciat:
Una persona ha comprat un objecte A i un objecte B. Els preus d'aquests dos objectes sumen seixanta euros, però li han fet un descompte d'un deu per cent en A i un descompte del vint per cent en B. Per tot, ha pagat cinquanta euros i quinze cèntims. Quin és el preu sense rebaixar de cada objecte ?.

Solució:
Anomenem:
    a   al preu sense rebaixar de l'objecte A
    b   al preu sense rebaixar de l'objecte B

    a^{'}   al preu rebaixat de l'objecte A
    b^{'}   al preu rebaixat de l'objecte B

Primer de tot, mirem d'expressar a^{'} en relació a a, i b^{'} en relació a b. Plantejant les corresponents proporcions:

        \dfrac{a^{'}}{a}=\dfrac{100-10}{100}

        \dfrac{b^{'}}{b}=\dfrac{100-20}{100}

i, de cada una, trobem (respectivament):

        a^{'}=\dfrac{90\,a}{100}

        b^{'}=\dfrac{80\,b}{100}

Fet això, traduïrem al llenguatge de l'àlgebra la resta de la informació de l'enunciat, escrivint el següent sistema d'equacions:

        \left.\begin{matrix}a & + & b&=&60\\ \dfrac{90}{100}\,a & +&\dfrac{80}{100}\,b&=&50,15\\\end{matrix}\right\}

simplificant ( multiplicant per 100 ambdós membre de la segona equació),

        \left.\begin{matrix}a & + & b&=&60\\ 90\,a & +&80\,b&=&5\,015\\\end{matrix}\right\}

multiplicant per -90 els dos membres de la primera equació i sumant amb la segona, substituint aquesta nova segona equació ( que és equivalent a l'original) s'obté el el següent sistema equivalent

        \left.\begin{matrix}a & + & b&=&60\\ \, & \,&-10\,b&=&-385\\\end{matrix}\right\}

Simplificant i aïllant b de la segona,
        b=38,50 \, \text{\euro}

I, posant aquest resultat a la primera equació, i aïllant a
    a=60-38,50
        =21,50 \,\text{euros}

\square

[nota del autor]

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios