miércoles, 27 de mayo de 2015

Para conseguir un aumento de temperatura de ...

ENUNCIADO
Para conseguir un aumento de temperatura de $20$ grados centígrados en $2$ litros de un cierto líquido se han necesitado $1000$ calorías al calentarlo. Si queremos producir un aumento de temperatura de $50$ grados centígrados en $3$ litros del mismo líquido, ¿ cuántas calorías son necesarias ? \textsf{( Ayuda: Debe tratarse esta cuestión como un problema de proporcionalidad compuesta ). }

SOLUCIÓN
Denotamos por $x$ al número de calorías pedido. En este problema aparecen tres magnitudes relacionadas: la energía ( en forma de calor ) con la que se eleva la temperatura del líquido; el aumento de temperatura, y la cantidad de líquido. La primera es directamente proporcional a la segunda; y también es directamente proporcional a la tercera.

Razonamos, ahora, en dos pasos:

I) Si se necesitan $1000$ calorías para conseguir un aumento de $20$ grados centígrados en $2$ litros de líquido, entonces cabe plantear la siguiente proporción directa ( entre el número de calorías y la cantidad de líquido ) para calcular la cantidad de calorías, $x'$, que ello supone $$\dfrac{x'}{3}=\dfrac{1000}{2}$$ de donde $$x'=1000\cdot \dfrac{3}{2}$$

II) Por otra parte, para conseguir un aumento de temperatura de $50$ grados centígrados, en lugar de un aumento de $20$ grados centígrados, podemos plantear la siguiente proporción ( también directa, entre el número de calorías pedido, $x$, y el aumento de temperatura ) $$\dfrac{x}{x'}=\dfrac{50}{20}$$ De aquí $$x=x'\cdot \dfrac{50}{20}$$ es decir $$x=1000\cdot \dfrac{3}{2}\cdot \dfrac{50}{20} = 3750 \, \text{calorías} $$

-oOo-

Otra forma ( abreviada):
La razón aritmética $\dfrac{x}{1000}$ ha de ser igual a la constante de proporcionalidad compuesta $k=k_1 \cdot k_2$, donde $k_1=\dfrac{3}{2}$ y $k_2=\dfrac{50}{20}$; por tanto, $$\dfrac{x}{1000}=\dfrac{3}{2} \cdot \dfrac{50}{20}$$ y, despejando $x$, obtenemos $$x=1000 \cdot \dfrac{3}{2} \cdot \dfrac{50}{20} = 3750 \, \text{calorías}$$
$\square$

[nota del autor]

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios