Loading web-font TeX/Main/Regular

viernes, 1 de junio de 2018

Un ejercicio de probabilidad compuesta

ENUNCIADO. Una urna contiene 3 bolas blancas, 4 bolas rojas y 5 bolas negras. Se extraen tres bolas de la urna, una tras otra, devolviendo las bolas que se van sacando a la urna antes de extraer la siguiente bola. Calcúlese la probabilidad de que las tres bolas extraídas no sean del mismo color.

SOLUCIÓN. La urna contiene un total de 3+4+5=12 bolas. Por la probabilidad compuesta, y teniendo en cuenta que el resultado de una extracción no depende del resultado de la anterior ( extracciones independientes ), la probabilidad de que las tres bolas sean blancas es igual a \dfrac{3}{12}\cdot \dfrac{3}{12} \cdot \dfrac{3}{12}=\dfrac{1}{64}
Análogamente, la probabilidad de que las tres bolas extraídas sean rojas es igual a \dfrac{4}{12}\cdot \dfrac{4}{12} \cdot \dfrac{4}{12}=\dfrac{1}{27}
y la probabilidad de que las tres bolas sean negras es \dfrac{5}{12}\cdot \dfrac{5}{12} \cdot \dfrac{5}{12}=\dfrac{125}{1728}
Entonces, al no incompatibles los tres sucesos anteriores, la probabilidad de que las tres bolas sean del mismo color ( blancas, rojas o negras ) es igual a \dfrac{1}{64}+\dfrac{1}{27}+\dfrac{125}{1728}=\dfrac{1}{8}

\square

No hay comentarios:

Publicar un comentario

Gracias por tus comentarios