¿De dónde sale el $\pm$ delante de la raíz cuadrada al despejar la incógnita elevada al cuadrado en una ecuación del tipo $x^2=k$ (siendo, desde luego, $k$ un número real no negativo)?
Vamos a resolver la ecuación y enseguida entenderemos el por qué:
  $x^2=k$
    $x^2-k=0$
      $x^2-(\sqrt{k})^2=0$
        $(x-\sqrt{k})(x+\sqrt{k})=0$, por la identidad notable $a^2-b^2=(a-b)(a+b)$
Entonces,
        $(x-\sqrt{k})(x+\sqrt{k})=0 \Leftrightarrow \left\{\begin{matrix}x-\sqrt{k}=0 \Rightarrow x=\sqrt{k}\\ x+\sqrt{k}=0 \Rightarrow x=-\sqrt{k} \end{matrix}\right.\quad (1)$
Comentario: Esto nos lleva a entender perfectamente la razón por la cual aparece ese $\pm$ en la famosa fórmula de las ecuaciones de segundo grado completas, $a\,x^2+b\,x+c=0$, siendo los coeficientes $a$, $b$ y $c$ distintos de cero, esto es, $x=\dfrac{-b\pm \sqrt{b^2-4\,a\,c}}{2\,a}$. Lo explico a continuación, deduciendo dicha fórmula, paso a paso:
  $a\,x^2+b\,x+c=0$
    $\dfrac{1}{a}\,(a\,x^2+b\,x+c)+\dfrac{1}{a}\cdot 0$
      $\dfrac{1}{a}\cdot a\,x^2+\dfrac{1}{a}\cdot b\,x+\dfrac{1}{a}\cdot c=0$
        $x^2+\dfrac{b}{a}\,x+\dfrac{c}{a}=0$
          $\left(x+\dfrac{b}{2a}\right)^2-\left(\dfrac{b}{2\,a}\right)^2+\dfrac{c}{a}=0$, donde hemos tenido en cuenta la identidad $(m+n)^2=m^2+2\,m\,n+n^2$
            $\left(x+\dfrac{b}{2a}\right)^2-\left(\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}\right)=0$
              $\left(x+\dfrac{b}{2a}\right)^2-\left(\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}\right)^2=0$
                $\left(\left(x+\dfrac{b}{2a}\right)-\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}\right)\,\left(\left(x+\dfrac{b}{2a}\right)+\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}\right)=0 \Leftrightarrow$
                  $\Leftrightarrow \left\{\begin{matrix}\left(x+\dfrac{b}{2a}\right)-\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}=0 \Rightarrow x+\dfrac{b}{2a} = \sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}} \\ \left(x+\dfrac{b}{2a}\right)+\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}=0 \Rightarrow x+\dfrac{b}{2a} = -\sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}} \end{matrix}\right.$
esto es,
$$x+\dfrac{b}{2a} = \pm \sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}$$
y por tanto,
  $x=-\dfrac{b}{2a} \pm \sqrt{\left(\dfrac{b}{2\,a}\right)^2-\dfrac{c}{a}}=$
    $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{(2\,a)^2}-\dfrac{c}{a}}$
      $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{2^2\,a^2}-\dfrac{c}{a}}$
        $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{4\,a^2}-\dfrac{c}{a}}$
          $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{4\,a^2}-\dfrac{4\,a}{4\,a} \cdot \dfrac{c}{a}}$
            $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2}{4\,a^2}-\dfrac{4\,a\,c}{4\,a^2}}$
              $=-\dfrac{b}{2a} \pm \sqrt{\dfrac{b^2-4\,a\,c}{4\,a^2}}$
                $=-\dfrac{b}{2a} \pm \dfrac{\sqrt{b^2-4\,a\,c}}{\sqrt{4\,a^2}}$
                  $=-\dfrac{b}{2a} \pm \dfrac{\sqrt{b^2-4\,a\,c}}{\sqrt{(2\,a)^2}}$
                    $=-\dfrac{b}{2a} \pm \dfrac{\sqrt{b^2-4\,a\,c}}{2\,a}$
                      $=\dfrac{-b \pm \sqrt{b^2-4\,a\,c}}{2\,a}$
$\diamond$
No hay comentarios:
Publicar un comentario
Gracias por tus comentarios